Raffles Mathematical Olympiad 2022 Round 1 (Solutions)

Date: 29 March 2022
Duration: 1 hour

This paper consists of 20 questions.
*For practice purpose, the multiple choice options are removed.
The marks allocation is as follows:

Question Number	Correct	Unanswered	Incorrect
1 to 10	4 marks	1 mark	0 mark
11 to 20	6 marks	1 mark	0 mark

1.

$$
\begin{aligned}
& \left(1+\frac{1}{3}\right) \times\left(1+\frac{1}{4}\right) \times\left(1+\frac{1}{5}\right) \times \ldots \times\left(1+\frac{1}{n}\right) \\
& =\frac{4}{3} \times \frac{5}{4} \times \frac{6}{5} \times \ldots \times \frac{n}{n-1} \times \frac{n+1}{n} \\
& =\frac{n+1}{3} \\
& \frac{n+1}{3}>2022 \\
& n+1>6066 \\
& \Rightarrow n>6065
\end{aligned}
$$

Smallest n is 6066 , so sum of digits of $n=\mathbf{1 8}$.
2.

$$
\begin{aligned}
\frac{23}{130} & =\frac{13}{130}+\frac{10}{130}=\frac{1}{10}+\frac{1}{13} \\
& =0.1+0.076923076923076923 \ldots \ldots . \\
& =0.1769230769230769230 \ldots \ldots
\end{aligned}
$$

Since $2022=1+6 \times 336+5$, the $2022^{\text {th }}$ digit is 3 .
3.

$123 a b c 789$

$=123 \times 1000000+\overline{a b c} \times 1000+789$
$=123 \times(999999+1)+\overline{a b c} \times(999+1)+789$
$=(123 \times 999999+\overline{a b c} \times 999)+(123+\overline{a b c}+789)$
For the number to be divisible by $999, \overline{a b c}=999-789-123=\overline{087}$, so $a+b+c=\mathbf{1 5}$.
4.

$$
\begin{aligned}
& \frac{2022}{674+674^{2}}+\frac{2022}{675+675^{2}}+\frac{2022}{676+676^{2}}+\ldots+\frac{2022}{1010+1010^{2}} \\
& =2022\left(\frac{1}{674 \times 675}+\frac{1}{675 \times 676}+\frac{1}{676 \times 677}+\ldots+\frac{1}{1010 \times 1011}\right) \\
& =2022\left(\frac{1}{674}-\frac{1}{675}+\frac{1}{675}-\frac{1}{676}+\frac{1}{676}-\frac{1}{677}+\ldots+\frac{1}{1010}-\frac{1}{1011}\right) \\
& =2022\left(\frac{1}{674}-\frac{1}{1011}\right)=3-2=\mathbf{1} .
\end{aligned}
$$

5.

$$
\begin{aligned}
& \frac{8088}{24}+\frac{8088}{40}+\frac{8088}{60}+\frac{8088}{84}+\frac{8088}{112}+\frac{8088}{144}+\frac{8088}{180}+\frac{8088}{220}+\frac{8088}{264} \\
& =2022\left[\frac{1}{6}+\left(\frac{1}{10}+\frac{1}{15}\right)+\left(\frac{1}{21}+\frac{1}{28}\right)+\left(\frac{1}{36}+\frac{1}{45}\right)+\left(\frac{1}{55}+\frac{1}{66}\right)\right] \\
& =2022\left[\frac{1}{6}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\right] \\
& =2022\left[\frac{1}{6}+\frac{1}{6}+\frac{1}{12}+\frac{1}{12}\right] \\
& =\mathbf{1 0 1 1} .
\end{aligned}
$$

6.

Ratio of diameters $=1: 2: 3$
Ratio of areas of circles $=1: 4: 9=S: 4 S: 9 S$

$$
\text { Area of unshaded parts in } \mathrm{cm}^{2}=9 S-4 S-S+S+S=6 S=6 \times \frac{22}{7} \times\left(\frac{7}{2}\right)^{2}=\mathbf{2 3 1} .
$$

7.

$$
\begin{aligned}
N & =2022+\frac{2022}{1+2}+\frac{2022}{1+2+3}+\frac{2022}{1+2+3+4}+\ldots+\frac{2022}{1+2+3+4+\ldots+2021} \\
& =2022\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+\ldots+\frac{1}{1+2+3+4+\ldots+2021}\right) \\
& =2022\left[2\left(\frac{1}{1}-\frac{1}{2}\right)+2\left(\frac{1}{2}-\frac{1}{3}\right)+2\left(\frac{1}{3}-\frac{1}{4}\right)+\ldots .+2\left(\frac{1}{2021}-\frac{1}{2022}\right)\right] \\
& =2022\left[2\left(1-\frac{1}{2022}\right)\right] \\
& =4044-2 \\
& =4042
\end{aligned}
$$

Sum of digits $=4+4+2=\mathbf{1 0}$.
8.

Sum $=30 \times 2022+\frac{6}{2}(5+7+9+11+13)=\mathbf{6 0 7 9 5}$.
9.

Let x be the number of male contestants in 2015 .
Let y be the number of female contestants in 2015 .
In 2016,
No. of male contestants $=\frac{6}{5} x$
No. of female contestants $=\frac{9}{5} y$

$$
\begin{aligned}
\frac{6}{5} x+\frac{9}{5} y & =\frac{33}{25}(x+y) \\
\frac{3}{5} x & =\frac{12}{5} y \\
x & =4 y
\end{aligned}
$$

Required fraction $=\frac{\frac{9}{5} y}{\frac{6}{5} x+\frac{9}{5} y}=\frac{\frac{9}{5} y}{\frac{6}{5}(4 y)+\frac{9}{5} y}=\frac{9}{33}=\frac{\mathbf{3}}{\mathbf{1 1}}$.
10.

Let Mary's speed be $x \mathrm{~km} / \mathrm{h}$.
Let the perimeter of the track be $y \mathrm{~km}$.
Suppose both of them ride anticlockwise: $(36-x) \times \frac{80}{60}=\frac{y}{2}$
Suppose Esther rides anticlockwise and Mary rides clockwise: $(36+x) \times \frac{10}{60}=\frac{y}{2}$

$$
\begin{aligned}
(36-x) \times \frac{80}{60} & =(36+x) \times \frac{10}{60} \\
288-8 x & =36+x \\
9 x & =252 \\
x & =28
\end{aligned}
$$

So, perimeter $=y=\frac{64}{3}=\mathbf{2 1} \frac{\mathbf{1}}{\mathbf{3}} \mathbf{k m}$.
11.

Let the number of litres of water drank per person be m and the number of days the amount of water distributed can last be n.

$$
\begin{align*}
& m n=(m-1)(n+15) . \tag{1}\\
& m n=(m-1.5)(n+30) \tag{2}
\end{align*}
$$

From (1): $15 m-n=15$
From (2): $30 m-1.5 n=45$
Solving,

$$
\begin{aligned}
0.5 n & =15 \\
\Rightarrow n & =30
\end{aligned}
$$

Therefore, the water distributed can last $\mathbf{3 0}$ days
12.

Eric wears yellow clothes on odd days and Jasmine wears yellow when the date is a multiple of 3 .
So both of them wear yellow clothes on $3^{\text {rd }}, 9^{\text {th }}, 15^{\text {th }}, 21^{\text {st }}$ and $27^{\text {th }}$ day of each month, and the number of days when both wear clothes of different colours is given by $365-5 \times 12=\mathbf{3 0 5}$ days .
13.

Among the first 9 integers, 5 odd integers and 4 even integers. Clearly to satisfy the requirement, we need to fill up the cells labelled " X " with odd integers and the rest with even integers.

Number of ways $=(5 \times 4 \times 3 \times 2 \times 1) \times(4 \times 3 \times 2 \times 1)=120 \times 24=\mathbf{2 8 8 0}$.
14.

Divide the 30 consecutive positive integers into 3 groups.
Group 1 : When divided by 3 , remainder is 0
Group 2 : When divided by 3 , remainder is 1
Group 3 : When divided by 3 , remainder is 2
Each group has 10 numbers.
For the sum of the 3 numbers to be divisible by 3 , the 3 numbers must be chosen in the following ways :

Case 1 : all 3 numbers from group 1, 2 or 3

$$
\text { No of ways }=\binom{10}{3} \times 3
$$

Case 2:1 number from each group

$$
\text { No of ways }=\binom{10}{1} \times\binom{ 10}{1} \times\binom{ 10}{1}
$$

Therefore the number of ways $=\binom{10}{3} \times 3+\binom{10}{1} \times\binom{ 10}{1} \times\binom{ 10}{1}=360+1000=\mathbf{1 3 6 0}$.
15.

Let the original height of water by $x \mathrm{~cm}$.
Let the lengths of rulers B and C be $b \mathrm{~cm}$ and $c \mathrm{~cm}$ respectively.
After adding some water, the height of water be $2 x \mathrm{~cm}$.
From the given information,

$$
\begin{aligned}
& 20-x: b-x: c-x=1: 2: 4 \\
& 20-2 x: b-2 x: c-2 x=1: 3: 7
\end{aligned}
$$

$$
\begin{aligned}
\frac{20-x}{c-x} & =\frac{1}{4} \\
80-4 x & =c-x \\
c & =80-3 x \\
\frac{20-2 x}{c-2 x} & =\frac{1}{7} \\
140-14 x & =c-2 x \\
140-14 x & =80-3 x-2 x \\
x & =\frac{20}{3}=\mathbf{6} \frac{\mathbf{2}}{\mathbf{3}} .
\end{aligned}
$$

16.

Let X be the point such that $B X$ is parallel to $A C$ and $C X$ is parallel to $A B$.
Then the parallelograms $A B X C$ and $A D E F$ have equal corresponding angles i.e. they are similar.
Hence area of triangle $A B C$
$=\frac{1}{2} \times \frac{A B}{A D} \times \frac{A C}{A F} \times($ area of parallelogram $A D E F)$
$=\frac{1}{2} \times \frac{26}{7} \times \frac{33}{6} \times 14$
$=143 \mathrm{~cm}^{2}$
17.

Let $\quad S=\frac{1}{5}+\frac{1}{5^{2}}+\frac{2}{5^{3}}+\frac{3}{5^{4}}+\frac{5}{5^{5}}+\frac{8}{5^{6}}+\ldots$
Then $\frac{S}{5}=\frac{1}{5^{2}}+\frac{1}{5^{3}}+\frac{2}{5^{4}}+\frac{3}{5^{5}}+\frac{5}{5^{6}}+\frac{8}{5^{7}}+\ldots$
(1) - (2): $\frac{4}{5} S=\frac{1}{5}+\left(\frac{1}{5^{3}}+\frac{1}{5^{4}}+\frac{2}{5^{5}}+\frac{3}{5^{6}}+\ldots\right)$

$$
=\frac{1}{5}+\frac{1}{5^{2}}\left(\frac{1}{5}+\frac{1}{5^{2}}+\frac{2}{5^{3}}+\frac{3}{5^{4}}+\ldots\right)
$$

$$
\frac{4}{5} S=\frac{1}{5}+\frac{1}{25} S
$$

Thus, $S=\frac{\mathbf{5}}{\mathbf{1 9}}$.
18.

Let $\angle B C A=p^{\circ}$ and $\angle F C A=q^{\circ}$
$p+q=46$
$\angle C A D=p^{\circ} \quad$ (alternate $\angle \mathrm{s}$)
Since $A C=A D, \angle A C D=\frac{180^{\circ}-p^{\circ}}{2}$
Since $A C=C F, \angle C A F=\frac{180^{\circ}-q^{\circ}}{2}=\angle E C A$ (alt \angle s)
$\angle E C D=\frac{180^{\circ}-p^{\circ}}{2}+\frac{180^{\circ}-q^{\circ}}{2}=\frac{360^{\circ}-\left(p^{\circ}+q^{\circ}\right)}{2}=\frac{360^{\circ}-46^{\circ}}{2}=157^{\circ}$.
19.

For a child with label n, we consider the factors of n.
For each odd factor, 3 candies are added and for each even factor, 1 candy is taken away. So the child has net addition of candies if the number of odd factors exceeds 3 times the number of even factors of n and vice versa.

Write $n=2^{r} s$, s : odd.
So every odd factor of n corresponds to r even factors of n.
Hence the child with label n gets extra candies if and only if $r<3$ ie. n is not divisible by 8 . Since there are 125 multiples of 8 among the first 1000 positive integers, the answer is $1000-125=\mathbf{8 7 5}$.
20.

Let the number of $\$ 1.4, \$ 1.8, \$ 2.4$ and $\$ 3$ be a, b, c and d respectively.

To solve
i.e. $\left.\quad \begin{array}{rl}1.4 a+1.8 b+2.4 c+3 d & =12 \\ & 7 a+9 b+12 c+15 d\end{array}\right)=60$
where a, b, c, d are non negative integers.

Since all the coefficients are divisible by 3 except $7, a$ must be divisible by 3 . So possible values for a are 0,3 or 6 .
$1^{\circ}: a=6$. Then equation reduces to $3 b+4 c+5 d=6$
There is only 1 solution: $b=2, c=d=0$.
$2^{\circ}: a=3$. Then equation reduces to $3 b+4 c+5 d=13$
The possible solutions are:

$$
\begin{aligned}
& d=2, b=1, c=0 \\
& d=1, c=2, b=0 \\
& d=0, b=3, c=1
\end{aligned}
$$

$3^{\circ}: a=0$. Then equation reduces to $3 b+4 c+5 d=20$
The possible solutions are:

$$
\begin{aligned}
& d=4, b=0, c=0 \\
& d=3 \text { (no solutions) } \\
& d=2, c=1, b=2 \\
& d=1, b=1, c=3 \\
& d=1, b=5, c=0 \\
& d=0, b=0, c=5 \\
& d=0, b=4, c=2
\end{aligned}
$$

In total, there are 10 ways

