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This paper consists of 20 questions.  
*For practice purpose, the multiple choice options are removed.  
 
The marks allocation is as follows: 
 

Question Number Correct Unanswered Incorrect 
1 to 10 4 marks 1 mark 0 mark 

11 to 20 6 marks 1 mark 0 mark 
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2. When the number is multiplied to itself, we have 

 

2023 digits 2023 digits

2023 digits 2023 digits

2023 digits 2023 digits 2023 digits
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2022 digits

1

Thus the sum is 9 2022 8 1 .× + + = 18207



 

 
 
3.  
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4. Since 
 copies of 2023

20232023...20231965
k



 is already a multiple of 5 and is divisible by 55, then it 

 must also be divisible by 11.  
 Taking difference of the sum of digits in odd and even places, we have 

  ( ) ( )2 2 1 6 0 3 9 5

7 which must be zero or a multiple of 11

k k

k

+ + + − + + +      
= −

 

 Thus, least k is .7   
 
 

5. 1Let 1 1 1 1
2013 2014 2015 2023

X =
+ + + +
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10i.e.         183 183
11

X

X

X

< <
+ + + + + + + +

< <

< <

 

 

 Thus, the integer part is .183  
 
 
6. Suppose Jack has x green marbles, so he’ll have 4x blue marbles, and kx red marbles, 
 where k is a positive integer.  
 Thus, we get 4x + 22 = 5kx.  

        (5k – 4)x = 22 
From here, we deduce that 5k – 4 is a factor of 22, so 5k – 4 is either 1, 2, 11 or 22.  
Since k is a positive integer, we have 5k – 4 = 1 or 11, whereupon k = 1 or 3. 
If k = 1, then x = 22 and 4x = 88 is a contradiction.  
So, when k = 3, we have x = 2, 4x = 8 and kx = 6, thus the number of marbles that 
Jack owns which are neither blue, green, nor red is 40 – 2 – 8 – 6 = .24   

 
 
7. Suppose Bob’s monthly income is 4x while Charlie’s 3x. Then we have  

  
( ) ( )

( )
( )

90004 1112
9000 73
12

7 4 750 11 3 750

33 28 750 11 7
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 Thus, Bob’s monthly income = .$2400  
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8.  
 
 
 
 
 
 
 
 
 
 
 

 2 2 2 2

Total area covered by the circle

=10 6 2 3.14 1

.

 − − − × 

= 263.14 cm

 

 
 
9. ( ) 21 2023 7.17c d c da b c ab c a+ = + = =  

 

2

5 2

2 5

Thus,   7. 
Next 17 289

  288 1
  2 .3 1
  3 .2 1

Thus, 3,  2 and 5.
Hence, required sum 7.3 3.2 2.5 5.7

         .
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10. Taking the total scores over k days, we have 

 

( )
( )

( )

1 2 3 40

1
40

2
1 80 1.80 2.40 4.20 5.16

Since  is a factor of ,  and 1,  we have 5 and .
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11. Since Alice’s speed is 1.5 times that of Bob’s, in other words, for every 3 units covered 
 by Alice, Bob would walk 2 units, thus we can partition the distance between X and Y 
 into 5 units as shown in the figure:  
 
 
 
 
 
 
 
 
 
 
 
 
 

 Distance of XY = 5350 .
2

× = 875 m  

 
12. There is a total of 420 males and 580 females (i.e. 1000 people) in both villages.  
 After the move of some villagers from B to A,  
 ratio of males to females in 
 Village A is 2u: 3u and Village B is 3v: 2v,  where u > v 
 We thus have  5u + 5v = 1000 ……….. (1) 
 and   3u + 2v = 580  ………... (2) 
 Solving these equations: v = 20, u = 180 
 Thus, a total of 400 – 5(20) = 300 people moved from B to A .  
 
 
13. Least number of students who can play all four sports 
 = 46 – [(46 – 40) + (46 – 38) + (46 – 35) + (46 – 27)] 
 = 2 students 
 
 
14.  
 
 
 
 
 
 
 
 
  
 
 Using the labelled diagram, we note that AD = DE, so 
   ½ AD2 = 578 
   AD2 = 22 . 172  
   AD = 34 cm 
 We have AD = ½ AF, thus AF = 68 cm. 
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15.  
 
 

 
 
 
 
 
 
 
 
  
 
 Using the labelled diagram,  

  

( )( )

3 3  8 1.5 cm
3 5 8 16

  3.5 cm
3 5 8 3  4 cm

3 3 2
  1 cm

1Area of shaded region 3.5 1 5
2

BE AB BE
DG AD

EH
CF AC CF
BE AB

FI

= = ⇒ = × =
+ +

⇒ =
+

= = ⇒ = × =

⇒ =

= +

= 211.25 cm

 

 
 
16. Since 6 can be prime factorised as 2.3, we can consider all possible marks are of the 
 form 3x + 4y, where 0 20,  0 10x y≤ ≤ ≤ ≤ . By varying y, we consider cases of 
 getting possible total marks. 
 If y = 0, possible total marks between (and inclusive henceforth) 0 to 60 are multiples 
 of 3. 
 If y = 1, possible total marks between 4 to 64 are 1 +  multiples of 3 
 If y = 2, possible total marks between 8 to 68 are 2 +  multiples of 3 
 If y = 3, possible total marks between 12 to 72 are multiples of 3 
 If y = 4, possible total marks between 16 to 76 are 1 +  multiples of 3 
 If y = 5, possible total marks between 20 to 80 are 2 +  multiples of 3 
 If y = 6, possible total marks between 24 to 84 are multiples of 3 
 If y = 7, possible total marks between 28 to 88 are 1 +  multiples of 3 
 If y = 8, possible total marks between 32 to 92 are 2 +  multiples of 3 
 If y = 9, possible total marks between 36 to 96 are multiples of 3 
 If y = 10, possible total marks between 40 to 100 are 1 +  multiples of 3 
 
 For total marks which are 
 1 + multiples of 3 between 0 to 96, it’s impossible to obtain 1 mark; 
 2 + multiples of 3 between 8 to 92, it’s impossible to obtain 2, 5, 95, 98 marks 
 Multiples of 3 between 0 to 96, it’s impossible to obtain 99 marks.  
  
 In all, these 6 scores: 1, 2, 5, 95, 98 and 99 are not possible.  
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17. Since each supermarket would basically have 4 boxes of apples and 3 boxes of oranges 
 delivered, we would only need to consider the no. of ways to distribute the remaining 
 3 boxes of apples and 3 boxes of oranges to these five supermarkets. For the 3 boxes of 

 apples, they can be distributed in 
5 5 4 5

5 20 10 35
1 1 1 3
      

+ + = + + =      
      

 ways, based 

 on whether they are distributed to 1, 2 or 3 supermarket(s) respectively. Similarly, there 
 are 35 ways to distribute the 3 boxes of oranges. Since these two are independent 
 distributions, the total no. of ways to distribute the fruits are 35.35 = 1225 ways.  
 
 
18.   
 
 
 
 
 
 
 
 Let’s use [ABC] to denote the area of triangle ABC.  
 3[ADE] = [ABC] and [ECF] = [EDF].   
 Since DECF ~ DBCA, we have 9[ECF] = [ABC].   

 Moreover [ADH] – [EFH] =12.6 Þ [ADE] – [EDF] = 12.6  
     1/3 [ABC] – 1/9 [ABC] = 12.6 
     2/9 [ABC] = 12.6 
         Thus,     [ABC] = 12.6 (9/2) = 56.7 cm2 . 
 
 
19.  

Row 
No. Pattern Sum 

1 1, 2 3 

2 1, 3, 2 3 + 3 

3 1, 4, 3, 5, 2 3 + 3 + 9 

4 1, 5, 4, 7, 3, 8, 5, 7, 2 3 + 3 + 9 + 27 

5 1, 6, 5, 9, 4, 11, 7, 10, 3, 11, 8, 13, 5, 12, 7, 
9, 2 3 + 3 + 9 + 27 + 81 

 
 By the pattern established for the sum, we have by row 9, sum of entries 
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( )

1 2 3 8

8

3 3 3 3 3

3 3 1
3

3 1
3 6560

3
2

.

= + + + + +

−
= +

−
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= 9843
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20.  

 

Suppose we have  and 0. 
We will demonstrate that this case cannot work. 

So the largest number is  and the smallest is .

Then, 11359 is not possible as we run through
all cases

a b c d d

abcd dcba

abcd dcba

> > > ≠

+ =
 of 1,  2, ..., 9, and corresponding 8,  7, 6, ..., 0.

Thus, we would consider  and 0. 

So the largest number is 0 and the smallest is 0 .

Now, from 0 0 11359,  we can deduce that 

d a
a b c d d

abc c ba

abc c ba a

= =
> > > =

+ = = 9.
Further, 11 tells us that 2 and so 3.

Then the difference between the two numbers 9320 and 2039 is .

a c c b+ = = =

7281

 

 
 
 
 


