Raffles Mathematical Olympiad 2023 Round 1 (Solutions)

Date: 28 March 2023
Duration: 1 hour

This paper consists of 20 questions.
*For practice purpose, the multiple choice options are removed.
The marks allocation is as follows:

Question Number	Correct	Unanswered	Incorrect
1 to 10	4 marks	1 mark	0 mark
11 to 20	6 marks	1 mark	0 mark

1. We have

$$
\begin{aligned}
& \frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\ldots+\frac{1}{n(n+1)} \\
& =\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\ldots+\left(\frac{1}{n}-\frac{1}{n+1}\right)>\frac{1823}{2023} \\
& \Rightarrow \quad 1-\frac{1}{n+1}>\frac{1823}{2023} \\
& \Rightarrow \quad \frac{1}{n+1}<\frac{200}{2023} \\
& \Rightarrow \quad n>\frac{1823}{200}=9 \frac{23}{200} \\
& \therefore \text { least integer } n=\mathbf{1 0} .
\end{aligned}
$$

2. When the number is multiplied to itself, we have

$$
\begin{aligned}
& \underbrace{999 \ldots .99}_{2023 \text { digits }} \times \underbrace{999 \ldots .99}_{2023 \text { digits }} \\
& =\underbrace{999 \ldots 99}_{2023 \text { digits }} \times(1 \underbrace{000 \ldots .00}_{2023 \text { digits }}-1) \\
& =\underbrace{999 \ldots 99}_{2023 \text { digits }} \underbrace{000 \ldots}_{2023 \text { digits }} \underbrace{999 \ldots .99}_{2023 \text { digits }} \\
& =\underbrace{999 \ldots 99}_{2022 \text { digits }} \underbrace{}_{2002 \ldots . \text { digits }_{0001}^{009}}
\end{aligned}
$$

Thus the sum is $9 \times 2022+8+1=\mathbf{1 8 2 0 7}$.
3.

Let $a=\frac{1}{17}+\frac{2}{39}+\frac{3}{53}+\frac{4}{79}+\frac{5}{98}, b=\frac{2}{39}+\frac{3}{53}+\frac{4}{79}+\frac{5}{98}$.
Then $a-b=\frac{1}{17}$.
Now, required sum

$$
\begin{aligned}
& =a\left(b+\frac{6}{119}\right)-\left(a+\frac{6}{119}\right) b \\
& =a b+\frac{6 a}{119}-a b-\frac{6 b}{119} \\
& =\frac{6}{119}(a-b) \\
& =\frac{\mathbf{6}}{\mathbf{2 0 2 3}} .
\end{aligned}
$$

4. Since $\underbrace{20232023 \ldots 2023}_{k \text { copies of } 2023} 1965$ is already a multiple of 5 and is divisible by 55 , then it must also be divisible by 11 .
Taking difference of the sum of digits in odd and even places, we have

$$
[(2+2) k+1+6]-[(0+3) k+9+5]
$$

$$
=k-7 \text { which must be zero or a multiple of } 11
$$

Thus, least k is 7 .
5. Let $X=\frac{1}{\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}+\cdots+\frac{1}{2023}}$
$\frac{1}{\frac{1}{2013}+\frac{1}{2013}+\frac{1}{2013}+\cdots+\frac{1}{2013}}<X<\frac{1}{\frac{1}{2023}+\frac{1}{2023}+\frac{1}{2023}+\cdots+\frac{1}{2023}}$

$$
\frac{2013}{11}<X<\frac{2023}{11}
$$

i.e. $\quad 183<X<183 \frac{10}{11}$

Thus, the integer part is $\mathbf{1 8 3}$.
6. Suppose Jack has x green marbles, so he'll have $4 x$ blue marbles, and $k x$ red marbles, where k is a positive integer.
Thus, we get $4 x+22=5 k x$.

$$
(5 k-4) x=22
$$

From here, we deduce that $5 k-4$ is a factor of 22 , so $5 k-4$ is either $1,2,11$ or 22 . Since k is a positive integer, we have $5 k-4=1$ or 11 , whereupon $k=1$ or 3 .
If $k=1$, then $x=22$ and $4 x=88$ is a contradiction.
So, when $k=3$, we have $x=2,4 x=8$ and $k x=6$, thus the number of marbles that Jack owns which are neither blue, green, nor red is $40-2-8-6=\mathbf{2 4}$.
7. Suppose Bob's monthly income is $4 x$ while Charlie's $3 x$. Then we have

$$
\begin{aligned}
\frac{4 x-\frac{9000}{12}}{3 x-\frac{9000}{12}} & =\frac{11}{7} \\
7(4 x-750) & =11(3 x-750) \\
33 x-28 x & =750(11-7) \\
x & =150(4)=600
\end{aligned}
$$

Thus, Bob's monthly income $=\$ 2400$.
8.

Total area covered by the circle
$=10^{2}-6^{2}-\left[2^{2}-3.14 \times 1^{2}\right]$
$=63.14 \mathrm{~cm}^{2}$.
9. $a\left(b^{c} c^{d}+1\right)=a b^{c} c^{d}+a=2023=7.17^{2}$

Thus, $a=7$.
Next $17^{2}=289$

$$
\begin{aligned}
& =288+1 \\
& =2^{5} \cdot 3^{2}+1 \\
& =3^{2} \cdot 2^{5}+1
\end{aligned}
$$

Thus, $b=3, c=2$ and $d=5$.
Hence, required sum $=7.3+3.2+2.5+5.7$

$$
=72 \text {. }
$$

10. Taking the total scores over k days, we have
$k(1+2+3+\cdots+n)=40 n$
$\frac{k n(n+1)}{2}=40 n$
$k(n+1)=80=1.80=2.40=4.20=5.16$
Since k is a factor of n, and $k>1$, we have $k=5$ and $n=\mathbf{1 5}$.
11. Since Alice's speed is 1.5 times that of Bob's, in other words, for every 3 units covered by Alice, Bob would walk 2 units, thus we can partition the distance between X and Y into 5 units as shown in the figure:

Distance of $X Y=350 \times \frac{5}{2}=\mathbf{8 7 5} \mathbf{m}$.
12. There is a total of 420 males and 580 females (i.e. 1000 people) in both villages.

After the move of some villagers from B to A,
ratio of males to females in
Village A is 2 u : 3 u and Village B is $3 \mathrm{v}: 2 \mathrm{v}$, where $\mathrm{u}>\mathrm{v}$
We thus have $5 u+5 v=1000$
and $\quad 3 u+2 v=580$
Solving these equations: $v=20, u=180$
Thus, a total of $400-5(20)=\mathbf{3 0 0}$ people moved from B to A .
13. Least number of students who can play all four sports
$=46-[(46-40)+(46-38)+(46-35)+(46-27)]$
$=2$ students
14.

Using the labelled diagram, we note that $\mathrm{AD}=\mathrm{DE}$, so

$$
\begin{aligned}
& 1 / 2 \mathrm{AD}^{2}=578 \\
& \mathrm{AD}^{2}=2^{2} .17^{2}
\end{aligned}
$$

$$
\mathrm{AD}=34 \mathrm{~cm}
$$

We have $\mathrm{AD}=1 / 2 \mathrm{AF}$, thus $\mathrm{AF}=\mathbf{6 8} \mathbf{~ c m}$.
15.

Using the labelled diagram,

$$
\begin{aligned}
\frac{B E}{D G}=\frac{A B}{A D}=\frac{3}{3+5+8} & \Rightarrow B E=\frac{3}{16} \times 8=1.5 \mathrm{~cm} \\
& \Rightarrow E H=3.5 \mathrm{~cm} \\
\frac{C F}{B E}=\frac{A C}{A B}=\frac{3+5}{3} & \Rightarrow C F=\frac{8}{3} \times \frac{3}{2}=4 \mathrm{~cm} \\
& \Rightarrow F I=1 \mathrm{~cm}
\end{aligned}
$$

Area of shaded region $=\frac{1}{2}(3.5+1)(5)$

$$
=11.25 \mathrm{~cm}^{2}
$$

16. Since 6 can be prime factorised as 2.3 , we can consider all possible marks are of the form $3 x+4 y$, where $0 \leq x \leq 20,0 \leq y \leq 10$. By varying y, we consider cases of getting possible total marks.
If $y=0$, possible total marks between (and inclusive henceforth) 0 to 60 are multiples of 3 .
If $y=1$, possible total marks between 4 to 64 are $1+$ multiples of 3
If $y=2$, possible total marks between 8 to 68 are $2+$ multiples of 3
If $y=3$, possible total marks between 12 to 72 are multiples of 3
If $y=4$, possible total marks between 16 to 76 are $1+$ multiples of 3
If $y=5$, possible total marks between 20 to 80 are $2+$ multiples of 3
If $y=6$, possible total marks between 24 to 84 are multiples of 3
If $y=7$, possible total marks between 28 to 88 are $1+$ multiples of 3
If $y=8$, possible total marks between 32 to 92 are $2+$ multiples of 3
If $y=9$, possible total marks between 36 to 96 are multiples of 3
If $y=10$, possible total marks between 40 to 100 are $1+$ multiples of 3
For total marks which are
$1+$ multiples of 3 between 0 to 96 , it's impossible to obtain 1 mark;
$2+$ multiples of 3 between 8 to 92 , it's impossible to obtain 2, 5, 95,98 marks Multiples of 3 between 0 to 96 , it's impossible to obtain 99 marks.

In all, these 6 scores: $1,2,5,95,98$ and 99 are not possible.
17. Since each supermarket would basically have 4 boxes of apples and 3 boxes of oranges delivered, we would only need to consider the no. of ways to distribute the remaining 3 boxes of apples and 3 boxes of oranges to these five supermarkets. For the 3 boxes of apples, they can be distributed in $\binom{5}{1}+\binom{5}{1}\binom{4}{1}+\binom{5}{3}=5+20+10=35$ ways, based on whether they are distributed to 1,2 or 3 supermarket(s) respectively. Similarly, there are 35 ways to distribute the 3 boxes of oranges. Since these two are independent distributions, the total no. of ways to distribute the fruits are $35.35=\mathbf{1 2 5}$ ways.
18.

Let's use [ABC] to denote the area of triangle ABC .
$3[\mathrm{ADE}]=[\mathrm{ABC}]$ and $[\mathrm{ECF}]=[\mathrm{EDF}]$.
Since $\triangle E C F \sim \triangle B C A$, we have $9[E C F]=[A B C]$.
Moreover $[\mathrm{ADH}]-[\mathrm{EFH}]=12.6 \Rightarrow[\mathrm{ADE}]-[\mathrm{EDF}]=12.6$

$$
1 / 3[\mathrm{ABC}]-1 / 9[\mathrm{ABC}]=12.6
$$

$2 / 9[\mathrm{ABC}]=12.6$
Thus, $\quad[\mathrm{ABC}]=12.6(9 / 2)=56.7 \mathrm{~cm}^{2}$.
19.

Row No.	Pattern	Sum
1	1,2	3
2	$1,3,2$	$3+3$
3	$1,4,3,5,2$	$3+3+9$
4	$1,5,4,7,3,8,5,7,2$	$3+3+9+27$
5	$1,6,5,9,4,11,7,10,3,11,8,13,5,12,7$, 9,2	$3+3+9+27+81$

By the pattern established for the sum, we have by row 9 , sum of entries
$=3+3^{1}+3^{2}+3^{3}+\ldots+3^{8}$
$=3+\frac{3\left(3^{8}-1\right)}{3-1}$
$=3+\frac{3(6560)}{2}$
$=9843$.
20.

Suppose we have $a>b>c>d$ and $d \neq 0$.
We will demonstrate that this case cannot work.
So the largest number is $\overline{a b c d}$ and the smallest is $\overline{d c b a}$.
Then, $a b c d+d c b a=11359$ is not possible as we run through
all cases of $d=1,2, \ldots, 9$, and corresponding $a=8,7,6, \ldots, 0$.
Thus, we would consider $a>b>c>d$ and $d=0$.
So the largest number is $\overline{a b c 0}$ and the smallest is $\overline{c 0 b a}$.
Now, from $\overline{a b c 0}+\overline{c 0 b a}=11359$, we can deduce that $a=9$.
Further, $a+c=11$ tells us that $c=2$ and so $b=3$.
Then the difference between the two numbers 9320 and 2039 is $\mathbf{7 2 8 1}$.

